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The herd‑immunity threshold 
must be updated for multi‑vaccine 
strategies and multiple variants
Iraj Yadegari1, Mehdi Omidi2 & Stacey R. Smith?1,3*

Several vaccines with different efficacies and effectivenesses are currently being distributed across 
the world to control the COVID-19 pandemic. Having enough doses from the most efficient vaccines 
in a short time is not possible for all countries. Hence, policymakers may propose using various 
combinations of available vaccines to control the pandemic with vaccine-induced herd immunity 
by vaccinating a fraction of the population. The classic vaccine-induced herd-immunity threshold 
suggests that we can stop spreading the disease by vaccinating a fraction of the population. However, 
that classic threshold is defined only for a single vaccine and may be invalid and biased when we 
have multi-vaccine strategies for a disease or multiple variants, potentially leading policymakers 
to suboptimal vaccine-allocation policies. Here, we determine which combination of multiple 
vaccines may lead to herd immunity. We show that simplifying the problem and considering the 
vaccination of the population as a single-vaccine strategy whose effectiveness is the sample mean of 
all effectivenesses would not be ideal, because many multi-vaccine strategies with a smaller herd-
immunity threshold can be proposed. We show that the herd-immunity threshold may vary due to 
changes in vaccine-uptake proportions. Moreover, we propose methods to determine the optimal 
combination of multiple vaccines in order to achieve herd immunity and apply our results to the issue 
of multiple variants. In addition, we determine a condition for reaching herd immunity in the presence 
of new emerging variants of concern. We show by example that new variants could influence our 
estimation of the vaccination reproduction number. It follows that the herd-immunity threshold must 
be updated not only when multi-vaccine strategies are used but also when multiple variants coexist in 
the population.

Following the rapid worldwide spread of the coronavirus SARS-CoV-2, which first emerged in late December 
2019 in Wuhan, China, a wide range of policies and interventions have been followed by countries in order to 
respond to the pandemic1,2. Multiple waves of the pandemic appeared all around the world, and multiple variants 
have emerged. Vaccination is one of the main policies to control this worldwide pandemic3. However, the vaccine 
stockpile is not sufficient to vaccinate the entire global population with any single vaccine, so using multiple 
vaccines is be the best chance to control the spread of the epidemic.

Herd immunity is a crucial determinant for public-health policymakers to contain and potentially eradicate 
an infectious disease. It plays an important role in controlling the pandemic once a sufficiently high proportion 
of the population gains immunity through vaccination or infection. The herd-immunity threshold is the propor-
tion of a population that must be vaccinated to stop an infectious disease from spreading. It can be approximated 
using the basic reproduction number, R0 , which is an epidemic measure used to describe the contagiousness of 
infectious diseases. It is defined as average number of new infections caused by a single infectious individual in 
a completely susceptible population4,5. Although R0 is affected by various biological, environmental, sociological 
and behavioural factors, it is generally reported as a single numeric value with a straightforward interpretation 
that incidence of the infectious disease is expected to decline if R0 is less than one and to increase if R0 is larger 
than one5–7.

Suppose that a specific infectious disease is distributed homogeneously in the population and a single vac-
cine provides protection against it. Let p be the fraction of the susceptible individuals who get vaccinated, with 
vaccinees selected randomly with the same probability among susceptible individuals. We assume the vaccine 
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provides lifelong immunity with no reinfection and protects only a proportion E among those vaccinated. Then 
the vaccination reproduction number is

where E ∈ (0, 1] represents the vaccine effectiveness8,9. If the vaccine is perfect and provides 100% immunity, 
then its effectiveness is E = 1 , but if it is imperfect and provides only partial immunity, then E < 1 . The popu-
lation reaches herd immunity, with incidence of the infection declining, if RV ≤ 1 , which yields the critical 
herd-immunity threshold8

implying that a higher proportion needs to be vaccinated if the vaccine is not perfect8,9. Since pc must belong to 
the interval [0, 1], we set pc equal to 1 if the value of (2) is larger than 1. We say a vaccine is effective if pc < 1 , 
and herd immunity is thus achievable.

Despite many advanced epidemiological models designed to explain the complex dynamics of infectious 
diseases10,11, Eqs. (1) and (2) are the most applicable formulas in the history of vaccination. While (1) and (2) 
are based on an assumption of homogeneity of the infection in the population, new results show that (2) rep-
resents an upper bound for the herd-immunity threshold under a heterogeneity assumption9,12. For example, it 
has been shown that in age-structured communities with heterogeneous activity groups, the disease-induced 
herd-immunity threshold would be lower than the one under the homogeneity assumption9.

Achieving herd immunity is a multi-dimensional problem, depending not only on an individual’s decision 
but also the economic, environmental and societal conditions of the population. Considering all effective fac-
tors and overparameterising the epidemiological models not only makes them more complex but also makes it 
hard to extract plausible advice. To prevent overparameterization, we assume that R0 and E are constant and that 
only a single variant of the virus exists in the population, except in the penultimate section, which discusses a 
disease with multiple variants. Furthermore, in order to estimate the herd-immunity threshold, we assume that 
only pharmaceutical intervention is effective and that mass vaccination is the optimal way to control the disease. 
Henceforth, in this article, achieving herd immunity is equivalent to RV ≤ 1.

At the time of writing, multiple vaccines have received approval from governments, and their safety, efficacy, 
effectiveness and limitations have been analysed13–16. There have been remarkable developments in RNA-based 
technologies to produce new vaccines against infectious diseases. It has been shown that the mRNA vaccines 
provide a long-lasting immune response and they are potentially much safer than other vaccines. Such vaccines 
have the potential to be quickly manufactured and to become powerful tools against rapid pandemics. This new 
technology provides an opportunity to have more than one mRNA vaccine for any vaccine-preventable disease 
in the future17,18. Therefore, extending Eqs. (1) and (2) is essential in order to better understand herd immunity 
under complex strategies and create a more reliable estimate of the herd-immunity threshold.

Suppose a policymaker is confronted with a pandemic and that multiple vaccines with different effectivenesses 
E1,E2, . . . ,Ek are available to control the spread. Using a single vaccine to vaccinate the entire population may 
not be the best strategy, because the available vaccine stockpile may be insufficient, and producing additional 
vaccines takes considerable time. In that situation, the policymaker must allocate different proportions of avail-
able vaccines to control the pandemic. However, if we want to use more than one vaccine, each with different 
effectiveness, for different proportions of the population, then Eqs. (1) and (2) are not valid. Here, we estimate 
the critical herd-immunity threshold for multi-vaccine allocation strategies. We also propose methods to allocate 
limited proportions of available vaccines in order to achieve herd immunity.

This article is organised as follows. First, we calculate the critical herd-immunity threshold under multi-
vaccine strategies. Next, we discuss different methods to estimate optimal vaccine-allocation strategies. We 
illustrate our results first for a multi-vaccine strategy for a single strain and secondly for the situation in Canada, 
with multiple variants and multiple vaccines. Finally, we conclude with a discussion.

Herd immunity and multiple vaccines
Assume that there are k > 1 effective vaccines for a single disease and that Ej is the effectiveness of the j-th 
vaccine. Suppose that vaccinees have been selected randomly with the same probability among susceptible 
individuals. Policymakers can have many strategies to allocate vaccines based on various criteria. Although the 
most favourable vaccination strategy is using only a single vaccine with the largest effectiveness for the entire 
population, it is often impossible to receive enough of that vaccine in time, so a combination of different vaccines 
may be the optimal strategy. Therefore, policymakers have many possible choices to consider various proportions 
of each available vaccine to achieve herd immunity. We consider the least favourable vaccination strategy to be 
using only a single vaccine with the smallest effectiveness for the entire population.

Let pj be the vaccine-uptake proportion, a fraction of susceptible individuals who receive the j-th vaccine, 
and let S be an allocation strategy with proportions (p1, p2, . . . , pk)′ such that 

∑k
j=1 pj ≤ 1 . Furthermore, assume 

that the susceptible populations receiving different vaccines are disjoint. The vaccination reproduction number 
with this multi-vaccine strategy is

(1)RV = R0

(

1− p E
)

,

(2)pc =

(
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1
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)
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,
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which is the expected reproduction number in the population after vaccination. Our goal is to find a critical lower 
bound for the total proportion of the population, p

S
=

∑k
j=1 pj , that must be vaccinated under the vaccination 

strategy S to achieve RS
V ≤ 1 . Obviously, the lower bound of p

S
 is between critical herd-immunity thresholds for 

the least and most favourable strategies; i.e., it belongs to the interval

where pcj  is the critical herd-immunity threshold if the j-th vaccine were the only vaccine used. For any vac-
cination strategy, the critical threshold would be between the least or most favourable thresholds. The curves 
in Fig. 1 represent the herd-immunity threshold for different strategies as a function of the basic reproduction 
numbers when the effectiveness of each vaccines is constant. The black dashed curve and the black solid curve 
represent the most-favourable and the least-favourable vaccination strategies, respectively. Other strategies’ 
curves are between these two curves.

Consider a set of vaccines that are effective for small values of R0 . Let δ = maxj p
c
j −minj p

c
j  be the length of 

the interval (4), which represents the difference between the least favourable and the most favourable vaccination 
strategies. Figure 2 illustrates δ as a function of the basic reproduction number, R0 . Obviously, δ is increasing for 
small values of R0 . It is maximised at a point that the least favourable strategy is not effective anymore. The peak 
of the curve is at the last point of R0 where all vaccines are effective; i.e., the peak is at R0 = 1/(1−minkj=1 Ej) . 
After this point, δ decreases until the most favourable strategy is effective. Then, δ is minimised to zero at 
R0 = 1/(1−maxkj=1 Ej) , which is the last point that the most favourable strategy is effective. After this point, δ 
is constant and equal to zero; i.e., achieving vaccine-induced herd immunity is impossible under any combina-
tion of vaccines.

Suppose the policymaker has to select one of the available sets of vaccines for a single infectious disease. Each 
set defines a different scenario for vaccination and is illustrated by a different curve in Fig. 2. δ can be interpreted 
as the effect of changing the share of a vaccine on the herd-immunity threshold. Usually, acceptance rates of vac-
cines are different, and their shares may change during a vaccination program, which results in a time-dependent 
and variable herd-immunity threshold. A large value of δ at the peak means that changing one vaccine’s share 
may substantially change the herd-immunity threshold. An important point is that the policymakers can propose 
effective multi-vaccine strategies if the reproduction number is close the peak of δ . On the other hand, improving 
a vaccination strategy is difficult for values of R0 when δ is very small. Hence, replacing a vaccine with one that 
has a better effectiveness may not have a substantial effect on the herd-immunity threshold. Overall, we can say 
that the best set of vaccines is the one that takes its peak at a larger value of R0 and where δ is small at the peak. 
An application of this plot is to compare vaccination programs in different countries. Each scenario in Fig. 2 can 
represent available vaccines for a given country.

Mean effectiveness of a multi‑vaccine strategy.  Estimating the smallest proportion of the population 
that must be vaccinated to achieve RS

V ≤ 1 is a challenging problem in controlling infectious diseases by vac-

(4)
(

min
j

pcj , max
j

pcj

)

,

Figure 1.   Illustration of the herd-immunity thresholds for four different vaccine-allocation strategies as a 
function of R0 when k = 6 vaccines are available and effectivenesses belong to the interval (0.7, 0.975): the 
black dashed curve represents the most favourable strategy, and the black solid curve is the least favourable 
strategy; all vaccine-allocation strategies will be between these two curves; the red dotted curve and the blue 
dashed-dotted curve are two different examples of vaccines strategies, represented by SA and SB , respectively. The 
strategy SA is equivalent to a single-vaccination strategy whose effectiveness is the average of effectivenesses. We 
can also propose strategies like SB that are closer to the most favourable strategy.
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cination. If we rewrite (3) as RS
V = R0 (1− pSĒS) , where p

S
=

∑k
j=1 pj is the total proportion of vaccinees, then 

ĒS is given by

which is a weighted mean of the effectiveness of all vaccines under the vaccination strategy S . Ē
S
 measures the 

mean effectiveness of the vaccination strategy, which is different from the definition of the vaccine effective-
ness. When we are dealing with multi-vaccine strategies, it shows how much a combination of vaccines would 
be efficient. Strategies with greater mean effectiveness are more promising candidates for an efficient impact.

For a single-vaccine strategy, Ē
S
 reduces to the effectiveness of a vaccine that is used for whole population. 

It is maximised for the most favourable and minimised for the least favourable vaccination strategy. When 
several vaccines are available, considering the vaccination of the population as a single-vaccine strategy whose 
effectiveness is the sample mean of all effectivenesses is equivalent to rewriting (3) as RS

V = R0 (1− pSĒ) , where 
∑k

j=1 Ej/k . This in valid only if the same proportion of all vaccines are available, which would not be a realistic 
assumption during most pandemics.

Relative effectiveness of a multi‑vaccine strategy.  In many cases, there are uncertainties in R0 , and 
having a precise approximation is not possible. Assume that we can represent the uncertainties with an interval, 
R0 ∈ (a, b) such that a and b are known values. We define a measure of relative effectiveness for a strategy as 

ε(S) = 1−

∫ b

a
| pcS − pcSm | dR0/

∫ b

a
| pcSℓ − pcSm | dR0 , where Sℓ and Sm are the least and most favourable strat-

egies, respectively. If all vaccines are effective for all values of R0 ∈ (a, b) , then it reduces to ε(S) = 1−
|1/ĒS−1/ĒSm |

|1/ĒSℓ−1/ĒSm |
 . 

Notice that ε(S) ∈ [0, 1] and takes its maximum or minimum if the strategy is the most or least favourable strat-
egy, respectively.

Herd‑immunity threshold for a multi‑vaccine strategy.  Assume that pj = αj p
c
j  , where αj ≥ 0 is a 

coefficient and pcj  is the critical herd-immunity threshold for the j-th vaccine if it were used for the whole popu-
lation. Since the proportions pcj  are known, given vaccine effectivenesses and the reproduction number of the 
disease, the vaccination strategy can be determined by α = (α1, . . . ,αk)

′ . (Note that the coefficient of a vaccine 
is not the fraction of the population who receive that vaccine.) Hereafter, a vaccine’s coefficient is a key concept 
in the terminology of our discussion. The total proportion of the population that must be vaccinated under the 
strategy S can be reformulated as

(5)Ē
S
=

∑k
j=1 pjEj

∑k
j=1 pj

,

Figure 2.   Illustration of the length of the interval (4) as a function of R0 for three different scenarios: the 
blue solid curve represents vaccine effectivenesses between 0.7 and 0.95; the red dashed curve represents 
effectivenesses between 0.7 and 0.9; the black dotted curve represents effectivenesses between 0.85 and 0.96. 
The first and second scenarios have a peak at the same point with different heights. However, the third scenario 
has a peak at a larger R0 value with a smaller height at its peak. Hence the third set of vaccines is effective for a 
larger range of reproduction numbers, and the difference between the least and the most favourable strategies is 
smaller than other scenarios.
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where (6) is a generalization of (2) and includes (2) as a special case if only a single vaccine exists. Furthermore, 
vaccine-induced herd immunity may be achieved if

or equivalently, if RV ≤ 1.
The interpretation of the coefficients may be summarised as follows. In the absence of deriving a closed 

formula for the herd-immunity threshold from the equation Rv = R0(1−
∑

j pjEj) , we formulate the problem 
using pj = αjp

c
j = αj(1− 1/R0)/Ej , or equivalently αj = pj/p

c
j  (where pcj  is a function of known values R0 and 

Ej ). This formulation leads to the condition 
∑

j αj ≥ 1 for achieving the herd immunity. Hence pj is the weight 
of the j-th vaccine with corresponding coefficient αj.

When a vaccination plan changes.  When a vaccination process starts, it can be stopped at any time 
because of new evidence on the vaccine’s side effects or any other reasons. Many social, political and economical 
factors may have substantial effects on vaccination progress. Assume that a vaccination process started with k 
vaccines under a strategy S(1) with proportions (p∗11, . . . , p

∗
1k)

′ , but after a while it has stopped. After or without 
a pause, the vaccination process will continue with adding, removing or replacing some vaccines. Assume that 
the second step of the vaccination contains k′ vaccines with effectivenesses E21, . . . ,E2k′ under a new strategy S(2) 
with proportions (p21, . . . , p2k′)′ . The vaccination reproduction number is RS(2)

V = R0

(

1− q−
∑k′

j=1 p2jE2j
)

 , 
where q =

∑k
j=1 p

∗
1jE1j is an approximation of the proportion of individuals who are immunised by vaccination 

in the first step. Note that q can be considered as a proportion of individuals who are immunised naturally by 
infection if the disease provides long-term immunity and if people who are infected are excluded from the vac-
cination program. Setting p2j = α2j p

c
2j implies that herd immunity can be reached if

which leads to a smaller level of vaccination coverage in order to achieve herd immunity. Note that this result 
can be extended to cases where the vaccination process has more than two steps.

Strategy estimation
When an infection exists in the population and vaccination is the main tool to stop spreading it, any failure to 
stockpile sufficient doses of the vaccine can have drastic consequences on public health. Hence, finding an opti-
mal vaccination strategy that leads to herd immunity is an important step in fighting the disease. In this section, 
we introduce methods to estimate the unknown vaccine coefficients αj for j = 1, . . . , k such that k is a known 
integer and E1, . . . ,Ek are known effectivenesses of available vaccines.

Ranking‑based method.  Assigning coefficients to vaccines, calculated with respect to some objective cri-
teria, is a simple way to estimate the optimal vaccination strategies. Let u be a positive variable that represents 
the utility of the vaccines, such that if ui < uj , then the j-th vaccine must have a larger coefficient than the i-th 
vaccine in a vaccination strategy. With this ordering, we can define

where n is a shrinkage parameter that takes non-negative values. By controlling n, some coefficients can be 
shrunk to zero, and their corresponding vaccines are removed from the vaccination program if desired. Here, 
we introduce some ranking-based methods: 

(A)	 When there is no prior information to sort available vaccines, a simple strategy with equal coefficients for 
all vaccines can be used; i.e., αj = 1/k . This strategy can be used when there is no meaningful difference 
between vaccines with respect to decision components. This strategy is equivalent to the case where we 
simply apply a classic single-vaccine strategy whose effectiveness is the average of the effectivenesses of all 
the available vaccines.

(B)	 When effectiveness is the most important criteria to sort vaccines, we may set uj = Ej . This strategy may 
be used for the case that all vaccines are effective but variation between their effectivenesses is large.

(C)	 If reducing side effects of the vaccines is the most important criteria, we must maximise the proportion of 
individuals who remain both unvaccinated and uninfected. This proportion is known as herd effect19. In 
this situation, we can set uj = 1− pcj  where pcj  is the herd-immunity threshold for the j-th vaccine. Under 
this strategy, if a vaccine is not effective and we cannot stop the spread of the disease by using only that 
specific vaccine, its coefficient will be zero.

(6)pc
S
=

(

1−
1

R0

)

∑k
j=1 αj/Ej
∑k

j=1 αj
,

(7)
k

∑

j=1

αj ≥ 1,

(8)
k′
∑

j=1

αj2 ≥ 1−
q

1− 1
R0

,

(9)αj =
unj

∑k
j=1 u

n
j
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(D)	 A strategy can be based on some criteria such as the length of vaccine-induced immunity, vaccine avail-
ability, vaccination cost, etc. If we assume that vaccines are ranked based on multiple criteria where rj is 
the rank of the j-th vaccine such that larger ranks are more important than smaller ones, then we can set 
uj = rj . This strategy would be the best choice when many factors must be considered to order the vaccines.

Optimising herd effect and vaccination cost.  Usually vaccinating the entire population is impossible, 
since immunocompromised people, pregnant women or young children often cannot be vaccinated. Therefore, 
the ideal vaccination policy would be the one with the lowest herd-immunity threshold, which allows the most 
people to avoid the infection without vaccination. Optimisation techniques can be used to estimate the optimal 
strategy with the appropriate proportion of vaccines, maximising the benefits while minimising the costs. Opti-
mal vaccination strategies to fight against specific disease for a single vaccine have been discussed20,21. Let S be 
a vaccination strategy with unknown coefficients α = (α1, . . . ,αk)

′ such that 
∑k

j=1 αj ≥ 1 . A reasonable crite-
rion for determining the optimal vaccine-allocation strategy is achieving herd immunity such that the number 
of individuals who escape the infection without vaccination is maximised, which indirectly decreases the side 
effects of the vaccine. This is equivalent to minimising 

∑k
j=1 αj/Ej , such that 

∑k
j=1 αj ≥ 1.

Optimising the total cost of vaccination is an important consideration for policymakers. Vaccination can 
have a major effect on developing countries, but health budgets are often limited. Therefore, cost effectiveness 
is a necessary part of mathematical modelling of the vaccination process. Let N be the size of the population of 
interest, cj be the cost of the j-th vaccine per individual, for j = 1, . . . , k . Then a lower bound for the total cost 
of vaccination under the vaccination policy S is N(1− 1

R0
)
∑k

j=1 αjcj/Ej . Assuming N and R0 are constant, one 
can estimate the vaccine weights by minimising the cost and maximizing the herd effect simultaneously, which 
yields the convex optimisation problem

where all cj and Ej are known constant values.

Example 1  Consider a situation of an infectious disease spreading in the population. Here, we explain how our 
proposed method can be used to allocate specific proportion of available vaccines to reach the herd immunity.

Assume that R0 = 2.5 and six vaccines V1, . . . ,V6 are available with different efficiencies E1 = 0.80 , E2 = 0.85 , 
E3 = 0.90 , E4 = 0.94 , E5 = 0.95 , and E6 = 0.95 ; also, assume SVj represents a single-vaccine strategy such that 
only the j-th vaccine is used for the entire population; SnA , SnB , SnC , and SnD are multi-vaccine strategies based on a 
ranking-based method, such that n can take values 5, 10 or 20. For the rank-based method, vaccines are ranked 
based on ascending order of their effectivenesses such that ri = i and the average of orders is used when ties 
exist and some effectivenesses are equal. All the information is presented in Table 1. The last three columns of 
the table represent pcS , the total proportion of individuals who must be vaccinated under each strategy, relative 
effectiveness of strategies, ε(S) , and mean effectiveness of strategies, ĒS , respectively. The table body elements 
are αj for j = 1, . . . , 6.

(10)min
α

k
∑

j=1

αj

(

cj + 1

Ej

)

such that

k
∑

j=1

αj ≥ 1,

Table 1.   Illustration of some strategies with their specific weights, herd-immunity threshold, relative 
effectiveness and mean effectiveness of strategies.

Strategy

Vaccines (effectiveness)

pc
S

ε(S) ĒSV1(0.80) V2(0.85) V3(0.90) V4(0.94) V5(0.95) V6(0.95)

Single-vaccine strategies

SV1
1 0 0 0 0 0 0.750 0.000 0.80

SV2
0 1 0 0 0 0 0.706 0.373 0.85

SV3
0 0 1 0 0 0 0.667 0.704 0.90

SV4
0 0 0 1 0 0 0.638 0.943 0.94

SV5
0 0 0 0 1 0 0.632 1.000 0.95

SV6
0 0 0 0 0 1 0.632 1.000 0.95

Multi-vaccine strategies

SA 1/6 1/6 1/6 1/6 1/6 1/6 0.671 0.672 0.895

S
1
B 0.13 0.15 0.17 0.18 0.19 0.19 0.667 0.691 0.898

S
10
B 0.04 0.08 0.15 0.23 0.25 0.25 0.650 0.850 0.924

S
20
B 0.01 0.03 0.10 0.25 0.30 0.30 0.640 0.926 0.937

S
1
C 0.12 0.15 0.17 0.18 0.19 0.19 0.665 0.722 0.903

S
10
C 0.01 0.03 0.11 0.25 0.30 0.30 0.640 0.926 0.937

S
20
C 0.00 0.00 0.05 0.25 0.35 0.35 0.635 0.966 0.944

S
1
D 0.05 0.10 0.14 0.19 0.26 0.26 0.650 0.838 0.922

S
10
D 0.00 0.00 0.00 0.02 0.49 0.49 0.632 1.000 0.950

S
20
D 0.00 0.00 0.00 0.00 0.50 0.50 0.632 1.000 0.950
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Table 1 is divided into two parts: the first represents single-variance strategies, while the second describes 
multi-vaccine strategies. The first part consists of six single-vaccine strategies such that pcj = PcSVj

 for j = 1, . . . , 6 . 
Therefore, pc1 = 0.75 , pc2 = 0.706 , pc3 = 0.667 , pc4 = 0.638 , pc5 = 0.632 and pc6 = 0.632 are critical vaccine thresh-
olds for V1, . . . ,V6 , respectively. The least favourable strategy SV1

 implies that at least 75% of the population must 
be vaccinated while the most favourable strategy needs only 63.2% of the population to be vaccinated.

Note that an infinite number of multi-vaccine strategies can be proposed. However, only a few strategies are 
discussed, based on estimation methods described in the ranking-based method. There are four categories of 
multi-vaccine strategies in the second part of Table 1:

•	 The first category of the second part is SA , where uniform coefficients are assigned to the vaccines. It leads 
to vaccination coverage equal to 0.67, which is equivalent to vaccinating the entire population with a single 
vaccine with effectiveness of E = 0.90 . Since αj = 1/6 ≈ 0.167 and pj = αjp

c
j  , then p1 ≈ 0.125 , p2 ≈ 0.118 , 

p3 ≈ 0.111 , p4 ≈ 0.107 , p5 ≈ 0.106 and p6 ≈ 0.106 are proportions of the population that will be vaccinated 
by V1, . . . ,V6 to reach herd-immunity.

•	 The second category is based on effectiveness values. By increasing the shrinkage parameter, the coefficients 
approaches zero slower than strategies in Categories C and D. For example, when n = 20 , Strategy S20B  pro-
poses to use all vaccines, while S20C  and S20D  remove some vaccines from the vaccination program.

•	 Category C of multi-vaccine strategies is based on herd immunity and assigns the largest coefficient to a 
vaccine that lets more people escape the infection without vaccination. Strategies in Category C can be close 
to some strategy in Category B. For example, strategies S10C  and S20B  suggest similar coefficients for vaccines.

•	 The last category is based on ranking vaccines. The shrinkage parameter reduces the coefficients faster than 
Categories B and C. For example, S20D  assigns coefficients only to vaccines with largest effectiveness.

•	 For a constant value of the shrinkage parameter n = n0 , Sn0D  is better than Sn0C  and Sn0C  is better than Sn0B  , accord-
ing to their mean and relative effectivenesses. When n is extremely large, all strategies in Categories B, C and 
D approach S20D  , which is the most favourable strategy.

•	 Note that relative effectiveness ε(S) represents the power of a possible combination of available vaccines with 
respect to the least and most favourable strategies; its small value does not imply weakness of the strategy to 
stop the infection. For example, the relative effectiveness is always small for strategies that put large weight 
on the least favourable vaccine regardless of its effectiveness. Hence, both mean and relative effectivenesses 
together show the power of a multi-vaccine strategy to contain the infection.

Making decisions for vaccine allocation is a complex problem and depends on multi-factor priorities. Table 1 
proposes plausible strategies that satisfy logistic, financial and social conditions of the public-health system. 
Overall, all strategies in Categories B, C, and D are better than SA , which is equivalent to a single-vaccine strategy 
whose effectiveness is the sample mean of all effectivenesses.

When several variants exist
When several variants of a virus exist in the population, some adjustments are needed to estimate the herd-
immunity threshold. Assume that only a single vaccine exists to control spreading a virus with m variants and that 
π1, . . . ,πm are the proportions of each variant, such that 

∑m
j=1 πj = 1 . In addition, E1, . . . ,Em are effectivenesses 

of the vaccine against variants. Under this setting, the vaccination reproduction number is R̄V = R̄0 (1− pĒ) , 
where R̄0 =

∑m
j=1 πjR

j
0 is the average reproduction number for all variants and Ē =

∑m
j=1 πjEj is the average 

effectiveness of the vaccine against the virus in the population. Note that estimating Ē would be a challenging 
problem if adequate and precise clinical tests to diagnose different variants are not done with respect to spatial 
distribution of the disease, which could lead to biased estimation of the prevalence of different variants. In addi-
tion, distribution of variants is time-dependent; consequently, Ē will change over time.

If k vaccines are available for a virus with m variants, we assume that Eij is the effectiveness of the i-th vaccine 
against the j-th variant. Therefore, the vaccination reproduction number would be R̄V = R̄0 (1−

∑k
j=1 piĒi) , 

where Ēi =
∑m

j=1 πjEij is the average effectiveness of the i-th vaccine against the virus. Herd immunity may 
thus be achieved if 

 where pi = αi[(1− 1/R0)/Ei1] and Ei1 is the effectiveness of the i-th vaccine against the original strain of the 
virus. This implies that when new emerging variants reduce the effectiveness of the vaccines, more vaccines are 
needed to reach herd immunity.

Example 2  In this example, we show how to estimate the vaccination reproduction number when several variants 
with different prevalence fractions exist in the population and multiple vaccines are used to control the spread 
of the disease. Multiple studies have evaluated the effectiveness of different vaccines against important variants 
of COVID-1922. Real-world data on vaccine effectiveness against all variants recognized by the World Health 
Organization (WHO) are currently limited. New emerging variants of concern (VOC)—currently including 
Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2)—are more contagious and can potentially 
increase disease severity and decrease vaccine effectiveness22–26.

(11)
k

∑

j=1

αj

(

Ēi

Ei1

)

≥ 1,
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Vaccination against symptomatic infection of COVID-19 in 2020–2021 has been deployed using BNT162b2 
(Pfizer-BioNTech), mRNA-1273 (Moderna) and ChAdOx1 (AstraZeneca) vaccines26. The effectiveness of these 
vaccines against VOC has been estimated by Nasreen et al.26. Estimates of the effectiveness of vaccines against 
infection with partial and full vaccination in Canada is reported in Table 2. However, due to insufficient data for 
Moderna and AstraZeneca vaccines, effectiveness of fully vaccinated cases was not estimated for these vaccines. 
Therefore, we estimated missing values and used other sources to provide estimates for data that we need. We 
make the following observations about Table 2.

•	 The second column represents the type of vaccine. In some cases, the vaccine type was not reported or indi-
viduals used mixed vaccines; i.e., first and second doses were not from the same vaccine.

	   The third column presents cumulative percentages of people who had received a COVID-19 vaccine by 
July 31, 2021. This information is available on website of the government of Canada at https://​health-​infob​
ase.​canada.​ca.

	   The fourth through seventh columns represent effectiveness of vaccines against the original strain and 
VOC. Since both Beta and Gamma variants share common mutations26 and insufficient numbers of them 
were sequenced, they are classified together.

•	 A report from Public Health Ontario, https://​www.​publi​cheal​thont​ario.​ca, provides a list of the reported 
effectiveness measures for vaccines around the world. In general, vaccine effectiveness for preventing symp-
tomatic infection 3–4 weeks after receiving a single dose is between 60% and 80% for the Pfizer-BioNTech and 
Moderna, and between 60% and 70% for AstraZeneca. Since the effectiveness of vaccines decreases against 
VOC, we estimate the effectiveness of Pfizer-BioNTech, Moderna and AstraZeneca for a single dose against 
the original strain at 80%, 80% and 70%, respectively.

•	 The Public Health England vaccine effectiveness report from March 2021, https://​assets.​publi​shing.​servi​ce.​
gov.​uk, shows that vaccine effectiveness against infection is about 85%, seven or more days after the second 
dose.

•	 Lopez Bernal et al. showed that vaccine effectiveness after two doses of the AstraZeneca vaccine is 74% against 
the alpha variant and 67% against the delta variant25. We used this information to estimate the missing values.

•	 The final column represents average effectiveness of each vaccine against all listed variants, which is calculated 
as a weighted mean of effectiveness measures; i.e., Ēi =

∑

j πjEij . The weights are prevalence of variants, 
which is represented in the bottom row of Table 2. This row presents cumulative prevalence of VOC as listed 
in the Canada mutation report, dated August 15, 2021. It is available at https://​outbr​eak.​info, which provides 
results of screening tests for mutations and whole-genome sequencing to assign COVID-19 lineage. The 
cumulative prevalence is the ratio of the genetic sequences containing the lineage or mutations to all genetic 
sequences collected since the identification of lineage or mutations in that location.

•	 The fourth row of single-dose and two-dose vaccination show “Vaccines not reported”, which represent a 
group of people who are vaccinated by Pfizer-BioNTech, Moderna or AstraZeneca, but the name of their 
vaccines are missing from the reported data. These account for 3.33% and 13.2% of people take single-dose 
and two-dose vaccines, respectively. We have estimated their corresponding rows by a weighted mean of 
effectiveness of all the vaccines with respect to their cumulative percentages in third column.

•	 The vaccine effectiveness of Moderna for full vaccination was estimated only against Alpha but was missing 
for other variants. We used the effectiveness of Moderna after first dose to estimate the missing values.

•	 Note that only 0.1% and 0.02% of people were partially and fully vaccinated using other vaccines. Therefore, 
we ignored this category.

•	 In order not to underestimate the reproduction number of the virus, we estimate missing values with smallest 
similar data. For example, in full vaccination, effectiveness of AstraZeneca was available only for the original 
variant, so we estimate its effectiveness against VOC with the same value.

Table 2.   Cumulative percentage of people who have received a COVID-19 vaccine in Canada by vaccine 
product and effectiveness in partially and fully vaccinated cases as of July 31, 2021.

Vaccine type Percentage ( pi ), %

Effectiveness against variants ( Eij)

Ēi , %Original strain, % Alpha, % Beta/gamma, % Delta, %

Partial (single-dose) 
vaccination

Pfizer 5.40 80 66 60 56 71

Moderna 2.20 80 83 77 72 80

AstraZeneca 0.12 70 64 48 67 65

Vaccine not 
reported 3.33 92 71 65 61 74

Full (two-doses) 
vaccination

Pfizer 28.12 95 89 84 87 91

Moderna 8.01 94 92 77 72 89

AstraZeneca 0.56 85 74 48 67 75

Vaccine not 
reported 13.2 95 89 82 83 90

mixed 9.7 85 74 48 67 75

Variant prevalence 
( πj)

– 47 31 15 6 –

https://health-infobase.canada.ca/covid-19/vaccination-coverage/
https://health-infobase.canada.ca/covid-19/vaccination-coverage/
https://www.publichealthontario.ca/-/media/documents/ncov/covid-wwksf/2021/04/wwksf-vaccine-effectiveness.pdf?la=en
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/989360/PHE_COVID-19_vaccine_effectiveness_report_March_2021_v2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/989360/PHE_COVID-19_vaccine_effectiveness_report_March_2021_v2.pdf
https://outbreak.info/location-reports?loc=CAN&selected=B.1.351&selected=B.1.351.2&selected=P.1&selected=B.1.617.1&selected=B.1.617.3
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•	 Mixed vaccination was approved by the government of Canada, and a proportion of people used different vac-
cines for their first and second doses. Since it was not clear which vaccines were mixed together, we assumed 
that most of them used AstraZeneca for the first dose and Moderna or Pfizer-BioNTech for the second dose. 
Therefore, to prevent overestimating the missing effectiveness values, we estimated the effectiveness of the 
mixed vaccines with the smallest effectiveness of those three vaccines for full vaccination.

•	 Empirical research shows substantial increases in estimated reproduction numbers of VOC, compared to 
the original strain. These increases are 29%, 25%, 38% and 97%, respectively, for Alpha, Beta, Gamma and 
Delta variants. We considered an average of 30% increase for Beta/Gamma27.

We can thus estimate the vaccination reproduction number using our proposed method. If we set R0 = 2.5 for 
the original strain, we have RV = R0 (1−

∑

Partial
piEi1 −

∑

Full
piEi1) = 0.8817 when only the original vari-

ant exists in the population. However, if several variants coexist and we modify the reproduction number 
with respect to their prevalence distribution and effectiveness of vaccines against them according to Table 2, 
then R̄V = R̄0 (1−

∑

Partial
piĒi −

∑

Full
piĒi) = 1.17 is our modified reproduction number. It follows that 

R̄V/RV ≈ 1.32 ; hence if we do not modify our calculations in presence of new emerging variants that are poten-
tially resistant against vaccines, we would underestimate the reproduction number, which may lead us to biased 
decisions. Note that R̄V/RV may change substantially if the prevalence of new emerging vaccine-resistant vari-
ants increases. This example illustrates how multiple variants may affect the vaccination reproduction number.

Discussion
We have analysed the complexity of herd immunity in the presence of multiple vaccines and multiple variants 
and proposed an update to the herd-immunity threshold when multiple vaccines are used or when several vari-
ants of the virus coexist. This update considers not only distribution of the vaccines but also the prevalence of 
variants and effectiveness of vaccines against them. Our contributions bring several interesting insights to the 
literature of herd immunity and vaccine-allocation strategy. First, we calculated the herd-immunity threshold for 
combinations of multiple vaccines and showed that it depends on not only the reproduction number and vaccine 
effectiveness but also the proportion of vaccinees for all vaccines. Moreover, we determined which combination 
of vaccines would lead to herd immunity. Second, we showed that when several vaccines are available, simplifying 
the problem and considering the vaccination of the population as a single-vaccine strategy whose effectiveness 
is the sample mean of all effectivenesses, 

∑k
j=1 Ej/k , is not ideal, because many multi-vaccine strategies with 

smaller herd-immunity thresholds can be proposed. Third, our proposed modification of the herd-immunity 
threshold enables us to search for optimal combination of vaccines in order to reach herd immunity. We described 
methods to search for optimal vaccine-allocation strategies based on different priorities. Fourth, we showed that 
vaccine-allocation policies are equivalent to simple convex optimisation problems if we wish to maximise the 
herd effect and/or minimise the cost of a vaccination strategy. Fifth, our definition of the mean effectiveness, 
which is a novel measure for describing efficiency of a vaccination program, can be used to compare different 
vaccination strategies. Finally, we extended the main results of this work to the situation where multiple variants 
of concern exist in the population. We determined conditions for reaching herd immunity in the presence of 
new emerging variants of concern. We have shown that several coexisting variants may change the vaccination 
effectiveness and have illustrated it with a Canadian example. It follows that the herd-immunity threshold must 
be updated with respect to the prevalence distribution of variants and effectiveness of vaccines against them.

Vaccine hesitancy is one of the most important problems in achieving herd immunity. The WHO has listed 
vaccine hesitancy as one of ten threats to global health. Vaccine hesitancy is defined as a delay in acceptance 
or refusal of vaccines despite the availability of vaccination services28. Recent investigations report different 
vaccine-acceptance rates for available vaccines for COVID-1929,30. Therefore, vaccine-acceptance rates or vac-
cine-hesitancy rates are potential components that can be used to optimise the vaccine’s coefficients in order to 
introduce an optimal vaccination strategy that minimises overall vaccine hesitancy.

Having more vaccines with large efficacies increases the strength of any vaccination program. However, the 
speed of vaccination should not be underrated in pandemic management. Containing the disease in the shortest 
possible time is an ideal goal, which needs to use the maximum amount of available vaccines. Therefore, having 
more available vaccines would be considered a component of an optimal strategy.

If we assume that an individual can be immunised after infection for a short period of time, then the vac-
cination reproduction number is time-dependent and can be modified as RV (t) = R0(1− q(t)−

∑k
j=1 pjEj) , 

where q(t) is the proportion of the population that is still immunised naturally at time t, which can be estimated 
empirically from antibody test results or from related epidemiological models. This implies that, with natural 
immunisation after infection, herd immunity may be achieved faster than predicted by a vaccine-induced herd-
immunity threshold. In contrast, we have shown that when multiple variants of the virus are emerging in the 
population, more vaccines are needed to reach the herd-immunity level. Therefore, a generalised condition 
for reaching herd immunity is 

∑k
j=1 αj(Ēi/Ei1) ≥ 1− q(t)/(1− 1/R0) , which includes (8) and (11) as special 

cases. Hence it is reasonable to expect to reach herd immunity at larger vaccination levels when the probability 
of reinfection is significantly large.

Our results have some limitations, which should be acknowledged. The first is that there is no measurement 
error in the estimates of R0 or E. the second is that they are constant across all communities in the popula-
tion, which implies that the population is homogeneous; this is not true in age-structured populations, for 
instance. The third is that they are not time-dependent. Further work is required to generalise our results in 
these circumstances.
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Vaccination at a level larger than the herd-immunity threshold does not imply that the infection can be 
stopped if vaccination has a different pattern from the infection. For example, a vaccination policy based on age 
prioritisation can save more lives if age is the only heterogeneous characteristic of the population and infection 
is uniformly distributed spatially. Without considering the spatial distribution of the infection, the vaccination 
process can waste valuable time and cause the disease to spread faster in the population. In an effective vaccina-
tion policy, spatial hotspots must take priority, and vaccines must therefore be distributed with the same spatial 
pattern as the infection itself. Only if proactive measures are taken will we be able to prevent the most infections 
and save the most lives using all possible vaccines at our disposal.

Received: 27 April 2021; Accepted: 29 September 2021

References
	 1.	 Haffajee, R. L. & Mello, M. M. Thinking globally, acting locally—The US response to COVID-19. N. Engl. J. Med. 382, e75 (2020).
	 2.	 Lu, N., Cheng, K.-W., Qamar, N., Huang, K.-C. & Johnson, J. A. Weathering COVID-19 storm: Successful control measures of five 

Asian countries. Am. J. Infect. Control 48, 851–852 (2020).
	 3.	 Jeyanathan, M. et al. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 20, 615–632 (2020).
	 4.	 Metcalf, C. J. E., Ferrari, M., Graham, A. L. & Grenfell, B. T. Understanding herd immunity. Trends Immunol. 36, 753–755 (2015).
	 5.	 Anderson, R. M. & May, R. M. Vaccination and herd immunity to infectious diseases. Nature 318, 323–329 (1985).
	 6.	 Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T. & Jacobsen, K. H. Complexity of the basic reproduction number (R0). Emerg. 

Infect. Dis. 25, 1 (2019).
	 7.	 Anderson, R. M. & May, R. M. Immunisation and herd immunity. Lancet 335, 641–645 (1990).
	 8.	 Fine, P., Eames, K. & Heymann, D. L. Herd immunity: A rough guide. Clin. Infect. Dis. 52, 911–916 (2011).
	 9.	 Britton, T., Ball, F. & Trapman, P. A mathematical model reveals the influence of population heterogeneity on herd immunity to 

SARS-CoV-2. Science 369, 846–849 (2020).
	10.	 Hethcote, H. W. The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000).
	11.	 Wang, Z. et al. Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016).
	12.	 Gomes, M. G. M. et al. Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. 

Preprint at medRxiv https://​doi.​org/​10.​1101/​2020.​04.​27.​20081​893 (2020).
	13.	 Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of 

four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (2020).
	14.	 Knoll, M. D. & Wonodi, C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet 397, 72–74 (2021).
	15.	 Burki, T. K. The Russian vaccine for COVID-19. Lancet Respir. Med. 8, e85–e86 (2020).
	16.	 Polack, F. P. et al. Safety and efficacy of the bnt162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
	17.	 Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 17, 261 

(2018).
	18.	 Mascola, J. R. & Fauci, A. S. Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 20, 87–88 (2020).
	19.	 John, T. J. & Samuel, R. Herd immunity and herd effect: New insights and definitions. Eur. J. Epidemiol. 16, 601–606 (2000).
	20.	 Lemmens, S., Decouttere, C., Vandaele, N. & Bernuzzi, M. A review of integrated supply chain network design models: Key issues 

for vaccine supply chains. Chem. Eng. Res. Des. 109, 366–384 (2016).
	21.	 Duijzer, L., Van Jaarsveld, W., Wallinga, J. & Dekker, R. Dose-optimal vaccine allocation over multiple populations (tech. rep.). 

Econometric Institute, Erasmus School of Economics (2015).
	22.	 Imai, N. et al. Interpreting estimates of coronavirus disease 2019 (covid-19) vaccine efficacy and effectiveness to inform simulation 

studies of vaccine impact: A systematic review. Wellcome Open Res. 6, 185 (2021).
	23.	 Sheikh, A., McMenamin, J., Taylor, B. & Robertson, C. Sars-cov-2 delta voc in scotland: Demographics, risk of hospital admission, 

and vaccine effectiveness. Lancet 397, 2461–2462 (2021).
	24.	 Abu-Raddad, L. J., Chemaitelly, H. & Butt, A. A. Effectiveness of the bnt162b2 covid-19 vaccine against the b. 1.1. 7 and b. 1.351 

variants. N. Engl. J. Med. 385, 187–189 (2021).
	25.	 Lopez Bernal, J. et al. Effectiveness of covid-19 vaccines against the B.1.617. 2 (Delta) variant. N. Engl. J. Med. 385, 585–594 (2021).
	26.	 Nasreen, S. et al. Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and 

severe outcomes with variants of concern in Ontario. Preprint at medRxiv https://​doi.​org/​10.​1101/​2021.​06.​28.​21259​420 (2021).
	27.	 Campbell, F. et al. Increased transmissibility and global spead of SARS-COV-1 variants of concern as at June 2021. Eurosurveillance 

26, 2100509 (2021).
	28.	 MacDonald, N. E. et al. Vaccine hesitancy: Definition, scope and determinants. Vaccine 33, 4161–4164 (2015).
	29.	 Wouters, O. J. et al. Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deploy-

ment. Lancet 397, 1023–1034 (2021).
	30.	 Schwarzinger, M., Watson, V., Arwidson, P., Alla, F. & Luchini, S. Covid-19 vaccine hesitancy in a representative working-age 

population in France: A survey experiment based on vaccine characteristics. Lancet Public Health 6(4), e210–e211 (2021).

Acknowledgements
The authors are grateful to two anonymous reviewers whose comments greatly improved the manuscript. S.R.S? 
is supported by NSERC Alliance and Discovery Grants.

Author contributions
I.Y. conceptualized the problem, co-designed the study and co-wrote the manuscript, O.M. co-designed the 
study, S.R.S.? co-wrote and edited the manuscript. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.R.S.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1101/2020.04.27.20081893
https://doi.org/10.1101/2021.06.28.21259420
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22970  | https://doi.org/10.1038/s41598-021-00083-2

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	The herd-immunity threshold must be updated for multi-vaccine strategies and multiple variants
	Herd immunity and multiple vaccines
	Mean effectiveness of a multi-vaccine strategy. 
	Relative effectiveness of a multi-vaccine strategy. 
	Herd-immunity threshold for a multi-vaccine strategy. 
	When a vaccination plan changes. 

	Strategy estimation
	Ranking-based method. 
	Optimising herd effect and vaccination cost. 

	When several variants exist
	Discussion
	References
	Acknowledgements


